Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros

Ano de publicação
Tipo de documento
Intervalo de ano
1.
biorxiv; 2021.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2021.11.26.470043

RESUMO

COVID-19 pandemic has accelerated the development of vaccines against its etiologic agent, SARS-CoV-2. However, the emergence of new variants of the virus requires new immunization strategies in addition to the current vaccines approved for human administration. In the present report, the immunological and safety evaluation in mice and hamsters of a subunit vaccine based on the RBD sub-domain with two adjuvants of oil origin is described. The RBD protein was expressed in insect cells and purified by chromatography until >95% purity. The protein was shown to have the appropriate folding as determined by ELISA and flow cytometry binding assays to its receptor, as well as by its detection by hamster immune anti-S1 sera under non-reducing conditions. In immunization assays in mice and hamsters, the purified RBD formulated with adjuvants based on oil-water emulsifications and squalene was able to stimulate specific neutralizing antibodies and confirm the secretion of IFN-{gamma} after stimulating spleen cells with the purified RBD. The vaccine candidate was shown to be safe, as demonstrated by the histopathological analysis in lungs, liver and kidney. These results demonstrate the potential of the purified RBD administered with adjuvants through an intramuscular route, to be evaluated in a challenge against SARS-CoV-2 and determine its ability to confer protection against infection.


Assuntos
COVID-19
2.
researchsquare; 2021.
Preprint em Inglês | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-420780.v1

RESUMO

The COVID-19 pandemic has claimed the lives of millions of people. Vaccination is a critical tool for the control of transmission; however, the recent emergence of potentially vaccine-resistant variants renders it important to have a range of vaccines types. It is desirable that vaccines are safe, effective, easy to administer and store, and inexpensive to produce. Newcastle disease virus (NDV), responsible for respiratory disease in chickens, has no pathogenic homologue in humans. We developed two types of NDV-vectored candidate vaccines, and evaluated them in a SARS-CoV-2 challenge in hamsters.  Vaccinations resulted in generation of neutralizing antibodies, prevented lung damage, and reduced viral load and viability. In conclusion, our NDV-based vaccine candidate performed well in a SARS-CoV-2 challenge and warrants evaluation in a Phase I human clinical trial. This candidate represents a promising tool in the fight against COVID-19.


Assuntos
COVID-19
3.
biorxiv; 2021.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2021.03.07.434276

RESUMO

The COVID-19 pandemic has claimed the lives of millions of people worldwide and threatens to become an endemic problem, therefore the need for as many types of vaccines as possible is of high importance. Because of the millions of doses required, it is desirable that vaccines are not only safe and effective, but also easy to administer, store, and inexpensive to produce. Newcastle Disease Virus (NDV) is responsible for a respiratory disease in chickens. It has no pathogenic homologue in humans. NDV is recognized as an oncolytic virus, and its use in humans for oncological treatment is being evaluated. In the present work, we have developed two types of NDV-vectored candidate vaccines, which carry the surface-exposed RBD and S1 antigens of SARS-CoV-2, respectively. These vaccine candidates were produced in specific-pathogen-free embryonating chicken eggs, and purified from allantoic fluid before lyophilization. These vaccines were administered intranasally to three different animal models: mice, rats and hamsters, and evaluated for safety, toxicity, immunogenicity, stability and efficacy. Efficacy was evaluated in a challenge assay against active SARS-CoV-2 virus in the Golden Syrian hamster model. The NDV-vectored vaccine based on the S1 antigen was shown to be safe and highly immunogenic, with the ability to neutralize SARS-CoV-2 in-vitro, even with an extreme dilution of 1/640. Our results reveal that this vaccine candidate protects the lungs of the animals, preventing cellular damage in this tissue. In addition, this vaccine reduces the viral load in the lungs, suggesting that it may significantly reduce the likelihood of transmission. Being lyophilized, this vaccine candidate is very stable and can be stored for several months at 4-8{degrees}C. In conclusion, our NDV-based vaccine candidate has shown a very favorable performance in the pre-clinical study, serving as evidence for a future evaluation in a Phase-I human clinical trial. This candidate represents a promising tool in the fight against COVID-19.


Assuntos
COVID-19 , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Doenças Respiratórias , Doença de Newcastle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA